Search results for "Strictly singular operator"
showing 5 items of 5 documents
On ergodic operator means in Banach spaces
2016
We consider a large class of operator means and prove that a number of ergodic theorems, as well as growth estimates known for particular cases, continue to hold in the general context under fairly mild regularity conditions. The methods developed in the paper not only yield a new approach based on a general point of view, but also lead to results that are new, even in the context of the classical Cesaro means.
Fredholm operator families ?II
1984
First, we give a characterization of semi-Fredholm operators (i.e. those which are left or right invertible modulo compact operators) on Hausdorff tvs which generalizes the usual one in the context of Banach spaces. Then we consider a class of semi-Fredholm operator families on tvs which include both the "classical" semi-Fredholm operator valued functions on Banach spaces (continuous in the norm sense), and families of the form T + Kn, where Kn is a collectively compact sequence which converges strongly to O. For these families we prove a general stability theorem.
CHARACTERIZATIONS OF STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS BY PERTURBATION CLASSES
2011
AbstractWe consider a class of operators that contains the strictly singular operators and it is contained in the perturbation class of the upper semi-Fredholm operators PΦ+. We show that this class is strictly contained in PΦ+, solving a question of Friedman. We obtain similar results for the strictly cosingular operators and the perturbation class of the lower semi-Fredholm operators PΦ−. We also characterize in terms of PΦ+ and in terms of PΦ−. As a consequence, we show that and are the biggest operator ideals contained in PΦ+ and PΦ−, respectively.
On the operators which are invertible modulo an operator ideal
2001
Atkinson [3] studied the operators which are left invertible $i(X, Y) or right invertible $T{X, Y) modulo /C, with K. the compact operators. He proved that an operator T € C(X, Y) belongs to <£/ or $ r if and only if the kernel and the range of T are complemented and additionally, the kernel is finite dimensional or the range is finite codimensional, respectively. Yood [19] obtained some perturbation results for these classes and Lebow and Schechter [12] proved that the inessential operators form the perturbation class for $,(A") and $r{X). Yang [18] extended some results of ^3, 19] to operators invertible modulo W, with W the weakly compact operators. His aim was to study a generalised Fre…
Property (w) and perturbations
2007
A bounded linear operator T ∈ L(X) defined on a Banach space X satisfies property (w), a variant of Weyl’s theorem, if the complement in the approximate point spectrum σa(T ) of the Weyl essential approximate spectrum σwa(T ) coincides with the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property (w), for a bounded operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operator and quasi-nilpotent operators commuting with T .